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Background

e Structural Health and Usage Monitoring:
— Loads monitoring: usage and fatigue
— Health monitoring: damage

* |nvestigation of novel sensors for:
— Strain measurements

— Guided wave inspection

— Integration (?)




Background
 Roadmap to structural health monitoring (SHM) and usage monitoring :

“...in the not too distant future, to transition from usage monitoring to individual component
damage tracking, to enhance our health assessment capability with better prediction of
fatigue for each dynamic component and fatigue critical area...”(*)

Locations of defects in
UHG60 airframe (**)

Cracks

Corroded

Loose Fasteners
Worn Excessively
Punctured
Interim Repairs
Buckled

Missing Fasteners

*Maley, S., Plets, J. and Phan, N.D.: “US Navy Roadmap to Structural Health and Usage Monitoring- The Present and Future.” 63 AHS Forum,

Virginia Beach, VA, May 1-3, 2007.
**Uh-60 Airframe Condition Evaluation (ACE) Technical Review, 17 February 2010, Aircraft Support Branch, Maintenance Engineering Division,

Army Aviation and Missile Command.




Objectives

* Legacy sensors have inherent limitations related to:
— Wiring
— Hardware requirements
— Power needs
— Reliability

* Basicresearch is needed to:
— Simplify health & usage monitoring tasks

— Enable new functionalities
(remote, wireless, distributed, embedded sensing....)




Objectives

 Fundamentally new transducer concepts must support an integrated Health
& Usage Monitoring process

* Opportunities offered by:
— Additive manufacturing
— Advanced micro/nano fabrication technologies
— Direct write technology for in-situ deposition of sensing material

* Patterning of transducer surface/electrodes leads to novel and tailored
functionalities

Tl Daniel Guggenheim
rospace Engineering




Outline

* Frequency Steerable Acoustic Transducers (FSATSs) for directional
sensing and actuation of guided waves

e Acoustic Wave Rosettes for multi-component strain sensing

e Conclusions & Outlook
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Wave-based techniques
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Directional wave generation

Directional transducers
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Frequency Steerable Transducers

 Phased-array technology
— Phasing/control of each component of an array
— Hardware complexity

* Frequency Steerable Acoustic Transducer (FSAT):
— Frequency-dependent directionality provided by spatial arrangement of active material
— Patterning of sensing geometry leads to focused sensing/actuation with reduced hardware

FSAT

* Array systems and related methods for structural health monitoring, US Patent 8,286,490
* Frequency-steered acoustic transducer using a spiral array US Patent 20140157898 A1l



Concept: 1D Combs
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Rose, J., Pelts, S., and Quarry, M., “A comb transducer model for guided wave NDE," Ultrasonics

36, 163-169 (1998). 0
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Concept

A 1D periodic sensing surface behaves as a narrow band filter

A 2D periodic sensing surface behaves as a narrow band filter with directional
sensitivity

S

0 0 0 f

ame considerations apply for ACTUATION, i.e. wave generation .
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Configuration & Basic Relations:
Sensing Mode

Constitutive relations (Piezo):
o = CFe—¢e'E

— D = ee+€FE

Matrix formulation

{g}zw(m)[@;e @T]{;}weg

Measured Voltage Distribution function
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Sensor’s directionality

* Measured voltage can be expressed as:

Loyt

_tp bld”C"r(
~ Ap [bT(d°CEde" — ea)b]

-2 Material directionality
D(w,0) = / elFo(w) (@1 cos f+zs sin Q)f(a:)da: —> Geometric directionality
Q

 Geometric directionality can be rewritten as

D(w, ) = / T ko) f(x)dx

—O0

D(ko(w),0) = F[f(x)] General framework for design




Example:
Rectangular array of point sources
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Experimental validation:

Plate and array configuration

Thin aluminum plate

-IIiiTIETT,

Array (7*7) Ti% NE
(D) d}/}\. y 0 ./
\.

di = 4.3 cm o

°
dg = 3.5 cin, 6)
= 550 )‘—y
8 = 165° °mo

Romanoni, M., et al., Two-dimensional periodic actuators for frequency-based beam steering.
Smart Materials & Structures, 2009. 18(12).




Experimental validation:
Directional Radiation




FSAT Spiral Array

k2 [rad/mm]

N \ \ \ “0.05 0 0.05
7 - K, rad/mm] * 21 [m]
N
CL Jl CL|’{30 — n|) Jl(a|k0—|-kn|)
D(k — ;2 _
(o(w), TN Z:: [ alko — Ky alko + k|
— O : :
k, = [(km ) — + k] (cos 0,41 + sin,42)

Each frequency corresponds to a given direction of sensing and radiation



FSAT Spiral Array
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FSAT Spiral Array: radiation
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FSAT Fabrication

Printed bitmap image

* Diameter =50 mm

e Bandwidth =[50, 350] kHz

* Angular range = [0, 180] deg.

* Double polarity

* Image resolution = 625 x 625 px
* Resulting pixel spacing = 80 um

Baravelli, Emanuele, et al. "Photolithography-based realization of Frequency Steerable Acoustic
Sensors on PVDF substrate." Sensors Applications Symposium (SAS), 2012 IEEE. IEEE, 2012.
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Experimental Results:

Plate response to chirp excitation




Experimental Results:

Plate response to chirp excitation
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Experimental Results:

Plate response to chirp excitation

25
9/02/2015 IWSHM - Stanford University



Experimental Results:

Plate response to chirp excitation
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Experimental Results:

Plate response to chirp excitation
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Experimental Results:

Plate response to chirp excitation
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Experimental Results:

Plate response to chirp excitation
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Experimental Results:

Plate response to chirp excitation
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Experimental Results:

Plate response to chirp excitation
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Experimental Results:
Source localization
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Experimental Results:

TwoO-source localization
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PVDF p7T




MEFC- FSAT

Apodized spiral FSAT
top electrode
/ on polyimide film
Structural
/ epoxy

Active layer
(PZT fibers + epoxy)

Structural
epoxy

Continuous back
electrode on

polyimide film
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Compensation Function

V(w) = jUy (w)ko(w)H(0)D(w, 0)

tp (dsici1 + d32V12C22)COS2(19) + (d31v12¢22 + d32C22)8m2(19)
bl (d°CEd " — ¢)b




Directionality Plots

Analytical

Experimental




Acoustic Wave Rosettes for multi-component
strain sensing




Conceptual Idea

* Think of patterning as a QR code where stretching of patterning carries
information about strain components

Scan info 2 No strain Scan info =2 €, €y, €y

Scan device = Surface Acoustic Wave (SAW)
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Surface Acoustic Wave (SAW) Strain Sensors

Actuator Sensing Device
Sa d(l d_g)J\/A\//\vm/
— I—
* Sensing material distribution N
fl@) =" 6(z—id(1+¢))
1=1

e Strain-Frequency relation

_ 087+ 112 |G d(1 + ¢)

CR

1+v Iy




Strain - Frequency relation
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* Encoded surface acoustic wave based strain sensor (US Patent 6810750 B1, 2004)

* W.C. Wilson, and G.M. Atkinson, Modeling of a Surface Acoustic Wave Strain Sensor, NASA Report, 2012.

* B. Mc Cormak, D. Geraghty, and M. O’Mahony, Modeling of Surface Acoustic Wave Strain Sensors Using Coupling-of-Modes Analysis, |IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(11) 2011.

e V. Olariu, A. Gnadinger, J. Bao and V. Giurgiutiu, Autonomous Battery-Less Wireless Strain Gage for Structural Health Monitoring






2D Extension:
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Determination of surface strain

components

* Strain rosette equation

| 2
£ €052 (Vg) + €4y sin(20) + £, sin*(¥g) = = |1 — (%)
0

— f,and 9, assigned at design stage. They correspond to the radiation peak in wavenumber domain
— f4is asensor output
- g, €, g, are the unknowns
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Numerical test

1m
> > q
> Displacement field
— > q
Locati f Sensing Devi v Ew
ocation of Sensing Device
g _ v = —viy
. E
—
— —>
> Strain Field
— o 2
v t > T T F
< —> — gy _= —VE
¥ — > Exy =0
—»
IE >
Georglaﬂml@m el

46

! Daniel Guggenheim
rospace Engineering

ot Tech



Example Solution: g =1 GPa

1 \ \ \
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0.9/ |— Output, Reference (q = 0 GPa) i
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Steering of Bulk Waves
Transducer Design and Numerical Simulations




Steering properties in the bulk
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f=4 MHz, Angle = 39.2°

Time snapshot
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f=5 MHz, Angle =51.7°

Time snapshot
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f=7 MHz, Angle = 63.7°

Time snapshot
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Inspection scenario
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Results: f = 3.25 MHz
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Results: f = 6.67 MHz
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Summary and Outlook

e Class of transducers designed through a Fourier-based approach
— Sensing material distribution is designed and analyzed in spatial Fourier domain
— Exploitation of inherent frequency-dependent directional properties (SHM application)
— Frequency shifts of radiation associated with local straining (strain sensing application)

* Currently working on Bulk wave FSAT for thickness steering/interrogation

* Potential for integration for a health&usage monitoring device

Strain Sensor
(Rayleigh wave based)

SHM Transducer /

(Lamb wave based)
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Thank you

Collaborators
M. Carrara, B. Xu,
E. Baravelli, M. Senesi, S. Gonella

Task 11 Multifunctional Sensors for Loads Monitoring and
Structural Diagnostic

Georgia Tech VLCROE (2011-2016).
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Background

* Monitoring issues:
— Airframe:
* Fatigue cracking and corrosion drivers of inspections and maintenance
» Damage from impact/ballistic events
— Rotor hub:
* Dynamic components subject to high-cycle fatigue
* Impact damage (ballistic damage, delaminations, voids)

e Structural Health and Usage Monitoring strategies:
— Loads monitoring through strain measurements for fatigue estimation
— Active monitoring of large areas or inaccessible hotspots
— Passive sensing and localization of impacts

& Sensors

&3 Sensors

Active SHM Passive SHM
59
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SHM Distributed Transducer Arrays
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Quadrilateral array
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Romanoni, M., et al., Two-dimensional periodic actuators for frequency-based beam steering.art Materials & Structures, 2009. 18(12).



Frequency-dependent radiation
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FSAT Spiral Array: thresholding
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Numerical Results:
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Determination ot surface strain

components

 Three equations needed to solve for strain components (linear system)

Ae=b —> e= A"}

— where:

€ = [es, €y, sa;y]T

Ali,:) = [COS2(190i), Sin2(1907;), Sin(2190i)]
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Numerical Test

Displacement field
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Example Solution: g =1 GPa

1 I I V X_"_ J I
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Outlook: higher order symmetries




