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Background	
  

	
  
•  Structural	
  Health	
  and	
  Usage	
  Monitoring:	
  

–  Loads	
  monitoring:	
  usage	
  and	
  fa:gue	
  
–  Health	
  monitoring:	
  damage	
  

	
   	
   	
   	
  	
  
•  Inves:ga:on	
  of	
  novel	
  sensors	
  for:	
  

–  Strain	
  measurements	
  
–  Guided	
  wave	
  inspec:on	
  
–  Integra:on	
  (?)	
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Background	
  
•  Roadmap to structural health monitoring (SHM) and usage monitoring : 
“…in the not too distant future, to transition from usage monitoring to individual component 

damage tracking, to enhance our health assessment capability with better prediction of 
fatigue for each dynamic component and fatigue critical area…”(*) 

  
 

3	
  

!
*Maley,	
  S.,	
  Plets,	
  J.	
  and	
  Phan,	
  N.D.:	
  “US	
  Navy	
  Roadmap	
  to	
  Structural	
  Health	
  and	
  Usage	
  Monitoring-­‐	
  The	
  Present	
  and	
  Future.”	
  63rd	
  AHS	
  Forum,	
  
Virginia	
  Beach,	
  VA,	
  May	
  1-­‐3,	
  2007.	
  	
  
**Uh-­‐60	
  Airframe	
  Condi2on	
  Evalua2on	
  (ACE)	
  Technical	
  Review,	
  17	
  February	
  2010,	
  Aircraa	
  Support	
  Branch,	
  Maintenance	
  Engineering	
  Division,	
  
Army	
  Avia:on	
  and	
  Missile	
  Command.	
  

Locations of defects in 
UH60 airframe (**) 



Objec:ves	
  

•  Legacy	
  sensors	
  have	
  inherent	
  limita:ons	
  related	
  to:	
  
–  Wiring	
  
–  Hardware	
  requirements	
  
–  Power	
  needs	
  
–  Reliability	
  

•  Basic	
  research	
  is	
  needed	
  to:	
  
–  Simplify	
  health	
  &	
  usage	
  monitoring	
  tasks	
  
–  Enable	
  new	
  func:onali:es	
  	
  

	
  (remote,	
  wireless,	
  distributed,	
  embedded	
  sensing….)	
  

IWSHM	
  -­‐	
  Stanford	
  University	
  
4	
  

9/02/2015	
  



Objec:ves	
  

•  Fundamentally	
  new	
  transducer	
  concepts	
  must	
  support	
  an	
  integrated	
  Health	
  
&	
  Usage	
  Monitoring	
  process	
  

•  Opportuni:es	
  offered	
  by:	
  
–  Addi:ve	
  manufacturing	
  
–  Advanced	
  micro/nano	
  fabrica:on	
  technologies	
  
–  Direct	
  write	
  technology	
  for	
  in-­‐situ	
  deposi:on	
  of	
  sensing	
  material	
  
	
  

•  Paierning	
  of	
  transducer	
  surface/electrodes	
  leads	
  to	
  novel	
  and	
  tailored	
  
func:onali:es	
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Outline	
  

•  Frequency	
  Steerable	
  Acous:c	
  Transducers	
  (FSATs)	
  for	
  direc:onal	
  
sensing	
  and	
  actua:on	
  of	
  guided	
  waves	
  

	
  
•  Acous:c	
  Wave	
  Roseies	
  for	
  mul:-­‐component	
  strain	
  sensing	
  
	
  
•  Conclusions	
  &	
  Outlook	
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Wave-­‐based	
  techniques	
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Direc:onal	
  wave	
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   Direc:onal	
  transducers	
  



•  Phased-array technology 
–  Phasing/control of each component of an array 
–  Hardware complexity 

•  Frequency Steerable Acoustic Transducer (FSAT): 
–  Frequency-dependent directionality provided by spatial arrangement of active material 
–  Patterning of sensing geometry leads to focused sensing/actuation with reduced hardware 

FSAT 

Frequency	
  Steerable	
  Transducers	
  

•  Array	
  systems	
  and	
  related	
  methods	
  for	
  structural	
  health	
  monitoring,	
  US	
  Patent	
  8,286,490	
  
•  Frequency-­‐steered	
  acous:c	
  transducer	
  using	
  a	
  spiral	
  array	
  US	
  Patent	
  20140157898	
  A1	
  



Concept:	
  1D	
  Combs	
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Rose,	
  J.,	
  Pelts,	
  S.,	
  and	
  Quarry,	
  M.,	
  “A	
  comb	
  transducer	
  model	
  for	
  guided	
  wave	
  NDE,"	
  Ultrasonics	
  
36,	
  163-­‐169	
  (1998).	
  

Transmiier	
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SIDE	
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Concept	
  

•  A	
  1D	
  periodic	
  sensing	
  surface	
  behaves	
  as	
  a	
  narrow	
  band	
  filter	
  

	
  
	
  
•  A	
  2D	
  periodic	
  sensing	
  surface	
  behaves	
  as	
  a	
  narrow	
  band	
  filter	
  with	
  direc:onal	
  

sensi:vity	
  

	
  
•  Same	
  considera:ons	
  apply	
  for	
  ACTUATION,	
  i.e.	
  wave	
  genera:on	
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Configura:on	
  &	
  Basic	
  Rela:ons:	
  
Sensing	
  Mode	
  

Cons:tu:ve	
  rela:ons	
  (Piezo):	
  

2 Formulation of piezoelectric sensing for Lamb waves

We illustrate the equations that govern sensing of elastic waves (Lamb waves) through
surface mounted piezoelectric patches. The case of a piezo patch of arbitrary shape is illus-
trated as a general framework for the subsequent illustration of the principles of directional
sensing through properly shaped patches.

2.1 Plate configuration and piezoelectric constitutive relations

The system under consideration is illustrated in Fig. 1. The domain of interest consists of
a mechanical structure (thin plate) on an open domain � and of a piezoelectric domain �p

of thickness tP . The reference system used for the analysis is located at the mid-surface of
the structure, with coordinates x1, x2 defining the plane of the structure.

Figure 1: Plate with arbitrarily shaped piezoelectric sensor bonded on the top surface, and
considered coordinate system.

The constitutive equations for the piezoelectric domain are expressed as:

⇥ = CE⇤� eTE

D = e ⇤+ ��E (1)

where ⇥ = { ⇥11 ⇥22 ⇥33 ⇤13 ⇤23 ⇤12 }T and ⇤ = { ⌅11 ⌅22 ⌅33 �13 �23 �12 }T
respectively are the mechanical stress and strain vectors, D = { D1 D2 D3 }T is the
electric charge vector, and E = { E1 E2 E3 }T is the electric field vector. Also, CE is
the sti⇥ness matrix of the material at constant electric field, e is the piezoelectric coupling
matrix evaluated at constant stress, while �� denotes the permittivity matrix at constant
strain. Equation 1 holds over the domain of the structure covered by the piezoelectric
patch, defined by x ⇥ �P , where x = x1i1 + x2i2 denotes a position vector on the plane of
the structure.

2

Matrix	
  formula:on	
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where it was assumed that all properties of the piezoelectric patch are constant over it area
�P . Equation 6 can be simplified by imposing that E1 = E2 = 0, and that the voltage
varies linearly across the thickness of the piezo tP which gives:

E3 =
V

tP
(7)

where V is the total voltage measured at the electrodes of the piezos. Accordingly, in eq. 6,
the electric field vector can be expressed as:

E =
V

tP
b (8)

Substituting in eq. 6, and solving for the measured voltage V gives:

V =
tP

AP [bT (d�CEd�T � ��)b]
bTd�CE

⇥

�
⇥f(x)dx (9)

where AP =
�
� ⌃(x)dx is the area occupied by the piezoelectric patch, and where f(x) =

⌃(x)⌅(x) is introduced to simplify the notation.
The sensing voltage expressed in eq. 9 can be evaluated in the presence of a plane wave

propagating in the plane of the structure at frequency ⇧. The surface displacement can be
in general be expressed as:

u(x,⇧) = U0(⇧)e
�jk0(⇥)·x (10)

where U0 defines the amplitude and the polarization of the wave at the considered fre-
quency, and k0(⇧) = k0(⇧)i⇥1 = k0(⇧)(cos ⇤i1 + cos ⇤i2) is the considered wave vector
defining plane wave propagation at an angle ⇤ (Fig. 2). Assuming that the considered
wave is characterized by a displacement field such that:

u(x,⇧) · i⇥2 = 0 (11)

The only strain component relevant to the surface mounted sensor is given by:

⇥1�1� =
⌥u⇥1
⌥x⇥1

= jU1�0
(⇧)k0(⇧)e

�jk0(⇥)x�
1 (12)

while ⇥1�1� = �1�2� = 0. In this case, the plane strain field in eq. 9 can be written as:

⇥ = ⇥1�1� [cos
2 ⇤, sin2 ⇤, 0]T (13)

⇥ = ⇥1�1�r(⇤) (14)

Substituting eq. 13 into eq. 9 gives:

V (⇧) = jU1�0
(⇧)k0(⇧)H(⇤)D(⇧, ⇤) (15)

4

Measured	
  Voltage	
   Distribu:on	
  func:on	
  

It is here convenient to extend the validity of the piezoelectric constitutive relation to
the entire domain of analysis � by introducing a functional f(x) defined as:

⇧(x) =

⇤
1, x ⇤ �P

0, x ⇤ �� �P
(2)

which describes the shape of the patch. A second function ⇤(x) is introduced to allow for
di⇥erent polarizations to be present within the piezoelectric domain. For simplicity, and
in light of practicality, the case of alternating polarizations over specified sub-regions of
�P is considered, so that the function ⇤(x) = ±1, x ⇤ �P depending on the polarization
distribution.

Accordingly, eq. 1 can be rewritten as:

⇤
⇥
D

⌅
= ⇧(x)

�
CE �⇤(x)eT

⇤(x)e �⇥

⇥⇤
⇤
E

⌅
, x ⇤ � (3)

For operation of the patch in a sensing mode, the second of eq.s 3 is of particular
importance and will be analyzed in detail. The analysis is simplified by introducing a
number of assumptions which reduce the size of the problem. First, it is assumed that
the piezoelectric material is polarized along its thickness direction x3, so that two of the
components of the electric displacement vector are zero (D1 = D2 = 0). The sensor is also
considered thin, therefore ⇥33 ⇥ 0, and in a state of plane strain, i.e. ⌅33 ⇥ �13 ⇥ �23 ⇥ 0,
and ⇤ = { ⌅11 ⌅22 �12 }T .

The second of eq.s 3 reduces to:

D3 = f(x)bTD = ⇧(x)bT (⇤(x)e⇤+ �⇥E), x ⇤ � (4)

where b = [0, 0, 1]T . Considering the strain-charge form of the piezoelectric constitutive
equations, eq. 4 can be rewritten as follows:

D3 = ⇧(x)bT [⇤(x)d�CE⇤+ (�� � d�CEd�T
)E], x ⇤ � (5)

where d�, �� respectively denote the matrix of the piezoelectric strain constants and of the
permittivity constants evaluated at constant stress.

2.2 Voltage generated by piezo sensors of arbitrary shape

In sensing mode, the total charge developed over the piezoelectric area is
⇧
�P

D3dx =⇧
� ⇧(x)D3dx ⇥ 0. Integration of both sides of eq. 5 therefore gives:

bTd�CE
⌃

�
⇤⇧(x)⇤(x)dx = bT (d�CEd�T � ��)

⌃

�
⇧(x)Edx (6)

3

f(x)
f(x)



•  Measured	
  voltage	
  can	
  be	
  expressed	
  as:	
  

–  Where	
  

•  Geometric	
  direc:onality	
  can	
  be	
  rewriien	
  as	
  

Sensor’s	
  direc:onality	
  

where it was assumed that all properties of the piezoelectric patch are constant over it area
�P . Equation 6 can be simplified by imposing that E1 = E2 = 0, and that the voltage
varies linearly across the thickness of the piezo tP which gives:

E3 =
V

tP
(7)

where V is the total voltage measured at the electrodes of the piezos. Accordingly, in eq. 6,
the electric field vector can be expressed as:

E =
V

tP
b (8)

Substituting in eq. 6, and solving for the measured voltage V gives:

V =
tP

AP [bT (d�CEd�T � ��)b]
bTd�CE

⇥

�
⇥f(x)dx (9)

where AP =
�
� ⌃(x)dx is the area occupied by the piezoelectric patch, and where f(x) =

⌃(x)⌅(x) is introduced to simplify the notation.
The sensing voltage expressed in eq. 9 can be evaluated in the presence of a plane wave

propagating in the plane of the structure at frequency ⇧. The surface displacement can be
in general be expressed as:

u(x,⇧) = U0(⇧)e
�jk0(⇥)·x (10)

where U0 defines the amplitude and the polarization of the wave at the considered fre-
quency, and k0(⇧) = k0(⇧)i⇥1 = k0(⇧)(cos ⇤i1 + cos ⇤i2) is the considered wave vector
defining plane wave propagation at an angle ⇤ (Fig. 2). Assuming that the considered
wave is characterized by a displacement field such that:

u(x,⇧) · i⇥2 = 0 (11)

The only strain component relevant to the surface mounted sensor is given by:

⇥1�1� =
⌥u⇥1
⌥x⇥1

= jU1�0
(⇧)k0(⇧)e

�jk0(⇥)x�
1 (12)

while ⇥1�1� = �1�2� = 0. In this case, the plane strain field in eq. 9 can be written as:

⇥ = ⇥1�1� [cos
2 ⇤, sin2 ⇤, 0]T (13)

⇥ = ⇥1�1�r(⇤) (14)

Substituting eq. 13 into eq. 9 gives:

V (⇧) = jU1�0
(⇧)k0(⇧)H(⇤)D(⇧, ⇤) (15)
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further development of eq. 17, which can be rewritten as follows:

D(⇥, �) =

⌅ +⇥

�⇥
e�jk0(⇥)·xf(x)dx (18)

which exploits the limited support of the function f(x) so that the integration limits can
be extended to infinity without a�ecting the value of the integral. Equation 18 can be
easily recognized as the spatial Fourier Transform (FT) of the function f(x)g(x), with the
understanding that its dependence upon frequency is based on its direct relation with the
wave vector k0 as defined by the dispersion relations for the considered medium. This
simple observation leads to the convenient estimation of the directivity for various sensor
shapes and polarizations through the identification of the proper FT pairs:

D(k0(⇥), �) = F [f(x)] (19)

where F [·] denotes the FT. Equation 19suggests the possibility of evaluating the sensor
directivity through FFT algorithms in the case of complex material distributions.

2.3 Examples of directivities for simple geometries

2.3.1 Circular sensor

The case of a circular piezo sensor can be modeled through the following expression for the
function f(x):

f(x) = rect

�
|x|
a

⇥
(20)

where the function rect is defined as follows:

rect(x) =

⇤
1, |x| <= 1
0, |x| > 1

(21)

and where a defines the radius of the disc. Figure 3 shows a configuration of the disc, where
the black domain identifies the location of the piezoelectric material. The corresponding
directivity is given by:

D(k0(⇥), �) = asinc(k0a) (22)

which confirms results previously presented for the case of a circular disc [ref]. The di-
rectivity function clearly shows the absence of any sensing directivity, and indicates that
preferential tuning occurs for wave modes corresponding to local maxima of the sinc func-
tion. Such maxima can be found at k0a = (2n� 1)�2 , where n = 1, 2, ... is an integer. The
directivity function in the wavenumber domain, as well as the directivity curve for k0 =

�
2a

is presented in Fig. 4 to confirm the absence of any preferential direction of sensitivity.
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General	
  framework	
  for	
  design	
  

Figure 2: Schematic of plane wave propagating at angle � on the plane of the structure x.

where:

H(�) =
tP
AP

bTd⇥CEr(�)

[bT (d⇥CEd⇥T � �⇥)b]
(16)

and

D(⇥, �) =

�

�
ejk0(⇤)(x1 cos �+x2 sin �)f(x)g(x)dx (17)

define two separate contributions to the measured voltage. The first quantity H contains
the material properties of the piezo-structure system, and can have a directional component
in case of non-isotropic properties. For the case of a PZT 5H material, whose properties
are listed in Table 1, the quantity H is constant with respect to the angle of wave propa-
gation �, and therefore no directionality is introduced. Other common piezo patches, such
as the Macro Fiber Composite sensors discussed in [ref], have non-isotropic piezoelectric
properties which lead to significant directional behaviors.

In contrast, parameter D describes the e�ect of the distribution of material as defined
by the function f(x). Specifically, the definition of D provides the opportunity of selecting
specific material and polarization distributions to tune the sensor to specific wavelengths
and associated wave modes, and to achieve desired directionality properties. Examples
of specific design configurations are provided in the following sections. Of interest, is the

5

Material	
  direc:onality	
  

Geometric	
  direc:onality	
  D(!, ✓) =

Z

⌦

ejk0(!)(x1 cos ✓+x2 sin ✓)f(x)dx
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Rectangular	
  array	
  of	
  point	
  sources	
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Thin	
  aluminum	
  plate	
  

Experimental	
  valida:on:	
  
Plate	
  and	
  array	
  configura:on	
  

Array	
  (7*7)	
  

Romanoni,	
  M.,	
  et	
  al.,	
  Two-­‐dimensional	
  periodic	
  actuators	
  for	
  frequency-­‐based	
  beam	
  steering.	
  
Smart	
  Materials	
  &	
  Structures,	
  2009.	
  18(12).	
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further development of eq. 17, which can be rewritten as follows:

D(⇥, �) =

⌅ +⇥

�⇥
e�jk0(⇥)·xf(x)dx (18)

which exploits the limited support of the function f(x) so that the integration limits can
be extended to infinity without a�ecting the value of the integral. Equation 18 can be
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understanding that its dependence upon frequency is based on its direct relation with the
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simple observation leads to the convenient estimation of the directivity for various sensor
shapes and polarizations through the identification of the proper FT pairs:

D(k0(⇥), �) = F [f(x)] (19)

where F [·] denotes the FT. Equation 19suggests the possibility of evaluating the sensor
directivity through FFT algorithms in the case of complex material distributions.

2.3 Examples of directivities for simple geometries

2.3.1 Circular sensor

The case of a circular piezo sensor can be modeled through the following expression for the
function f(x):

f(x) = rect

�
|x|
a

⇥
(20)

where the function rect is defined as follows:

rect(x) =

⇤
1, |x| <= 1
0, |x| > 1

(21)

and where a defines the radius of the disc. Figure 3 shows a configuration of the disc, where
the black domain identifies the location of the piezoelectric material. The corresponding
directivity is given by:

D(k0(⇥), �) = asinc(k0a) (22)

which confirms results previously presented for the case of a circular disc [ref]. The di-
rectivity function clearly shows the absence of any sensing directivity, and indicates that
preferential tuning occurs for wave modes corresponding to local maxima of the sinc func-
tion. Such maxima can be found at k0a = (2n� 1)�2 , where n = 1, 2, ... is an integer. The
directivity function in the wavenumber domain, as well as the directivity curve for k0 =

�
2a

is presented in Fig. 4 to confirm the absence of any preferential direction of sensitivity.

6

D(k0(!), #) = �j
a

N

NX

n=1


J1(a|k0 � kn|)
a|k0 � kn|

� J1(a|k0 + kn|)
a|k0 + kn|

�

F�1

f(x) =
1

N
rect

� |x|
a

⇥ N⇤

n=1

sin(kn · x)
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⌅ +⇥

�⇥
e�jk0(⇥)·xf(x)dx (18)
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wave vector k0 as defined by the dispersion relations for the considered medium. This
simple observation leads to the convenient estimation of the directivity for various sensor
shapes and polarizations through the identification of the proper FT pairs:

D(k0(⇥), �) = F [f(x)] (19)

where F [·] denotes the FT. Equation 19suggests the possibility of evaluating the sensor
directivity through FFT algorithms in the case of complex material distributions.

2.3 Examples of directivities for simple geometries

2.3.1 Circular sensor

The case of a circular piezo sensor can be modeled through the following expression for the
function f(x):

f(x) = rect
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|x|
a

⇥
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where the function rect is defined as follows:

rect(x) =

⇤
1, |x| <= 1
0, |x| > 1

(21)

and where a defines the radius of the disc. Figure 3 shows a configuration of the disc, where
the black domain identifies the location of the piezoelectric material. The corresponding
directivity is given by:

D(k0(⇥), �) = asinc(k0a) (22)

which confirms results previously presented for the case of a circular disc [ref]. The di-
rectivity function clearly shows the absence of any sensing directivity, and indicates that
preferential tuning occurs for wave modes corresponding to local maxima of the sinc func-
tion. Such maxima can be found at k0a = (2n� 1)�2 , where n = 1, 2, ... is an integer. The
directivity function in the wavenumber domain, as well as the directivity curve for k0 =

�
2a

is presented in Fig. 4 to confirm the absence of any preferential direction of sensitivity.
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Spiral	
  FSAT	
  radia:on	
  FSAT	
  Spiral	
  Array:	
  radia:on	
  



•  Diameter	
  =	
  50	
  mm	
  
•  Bandwidth	
  =	
  [50,	
  350]	
  kHz	
  
•  Angular	
  range	
  =	
  [0,	
  180]	
  deg.	
  
•  Double	
  polarity	
  
•  Image	
  resolu:on	
  =	
  625	
  x	
  625	
  px	
  
•  Resul:ng	
  pixel	
  spacing	
  =	
  80	
  µm	
  

Printed	
  bitmap	
  image	
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Experimental Results: 
Source localization 
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Experimental Results: 
Two-source localization 
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MFC-­‐	
  FSAT	
  

Ac:ve	
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(PZT	
  fibers	
  +	
  epoxy)	
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top	
  electrode	
  	
  

on	
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  film	
  

Structural	
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Structural	
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Con:nuous	
  back	
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  on	
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  film	
   In	
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  with	
  Prof.	
  Cesnik	
  @	
  UMich	
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where it was assumed that all properties of the piezoelectric patch are constant over it area
�P . Equation 6 can be simplified by imposing that E1 = E2 = 0, and that the voltage
varies linearly across the thickness of the piezo tP which gives:

E3 =
V

tP
(7)

where V is the total voltage measured at the electrodes of the piezos. Accordingly, in eq. 6,
the electric field vector can be expressed as:

E =
V

tP
b (8)

Substituting in eq. 6, and solving for the measured voltage V gives:

V =
tP

AP [bT (d�CEd�T � ��)b]
bTd�CE

⇥

�
⇥f(x)dx (9)

where AP =
�
� ⌃(x)dx is the area occupied by the piezoelectric patch, and where f(x) =

⌃(x)⌅(x) is introduced to simplify the notation.
The sensing voltage expressed in eq. 9 can be evaluated in the presence of a plane wave

propagating in the plane of the structure at frequency ⇧. The surface displacement can be
in general be expressed as:

u(x,⇧) = U0(⇧)e
�jk0(⇥)·x (10)

where U0 defines the amplitude and the polarization of the wave at the considered fre-
quency, and k0(⇧) = k0(⇧)i⇥1 = k0(⇧)(cos ⇤i1 + cos ⇤i2) is the considered wave vector
defining plane wave propagation at an angle ⇤ (Fig. 2). Assuming that the considered
wave is characterized by a displacement field such that:

u(x,⇧) · i⇥2 = 0 (11)

The only strain component relevant to the surface mounted sensor is given by:

⇥1�1� =
⌥u⇥1
⌥x⇥1

= jU1�0
(⇧)k0(⇧)e

�jk0(⇥)x�
1 (12)

while ⇥1�1� = �1�2� = 0. In this case, the plane strain field in eq. 9 can be written as:

⇥ = ⇥1�1� [cos
2 ⇤, sin2 ⇤, 0]T (13)

⇥ = ⇥1�1�r(⇤) (14)

Substituting eq. 13 into eq. 9 gives:

V (⇧) = jU1�0
(⇧)k0(⇧)H(⇤)D(⇧, ⇤) (15)
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•  Think	
  of	
  paierning	
  as	
  a	
  QR	
  code	
  where	
  stretching	
  of	
  paierning	
  carries	
  
informa:on	
  about	
  strain	
  components	
  

Scan	
  info	
  à	
  No	
  strain	
   Scan	
  info	
  à	
  𝝐x,	
  𝝐y,	
  𝝐xy	
  

Scan	
  device	
  à	
  Surface	
  Acous:c	
  Wave	
  (SAW)	
  



Surface	
  Acous:c	
  Wave	
  (SAW)	
  Strain	
  Sensors	
  

	
  
•  Sensing	
  material	
  distribu:on	
  

	
  

•  Strain-­‐Frequency	
  rela:on	
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Actuator	
   Sensing	
  Device	
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Strain	
  -­‐	
  Frequency	
  rela:on	
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f (ε ) = c
d(1+ ε )

d = c
f0
⇒ f0 = 4MHz→ d =1.3mm

•  Encoded	
  surface	
  acous:c	
  wave	
  based	
  strain	
  sensor	
  (US	
  Patent	
  6810750	
  B1,	
  2004)	
  
•  W.C.	
  Wilson,	
  and	
  G.M.	
  Atkinson,	
  Modeling	
  of	
  a	
  Surface	
  Acous2c	
  Wave	
  Strain	
  Sensor,	
  NASA	
  Report,	
  2012.	
  
•  B.	
  Mc	
  Cormak,	
  D.	
  Geraghty,	
  and	
  M.	
  O’Mahony,	
  Modeling	
  of	
  Surface	
  Acous2c	
  Wave	
  Strain	
  Sensors	
  Using	
  Coupling-­‐of-­‐Modes	
  Analysis,	
  IEEE	
  

Transac?ons	
  on	
  Ultrasonics,	
  Ferroelectrics,	
  and	
  Frequency	
  Control,	
  58(11)	
  2011.	
  
•  V.	
  Olariu,	
  A.	
  Gnadinger,	
  J.	
  Bao	
  and	
  V.	
  Giurgiu:u,	
  Autonomous	
  BaPery-­‐Less	
  Wireless	
  Strain	
  Gage	
  for	
  Structural	
  Health	
  Monitoring	
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2D	
  Extension:	
  
Co-­‐Located	
  Roseie	
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Paiern	
  is	
  defined	
  in	
  the	
  wavenumber	
  domain	
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Determina:on	
  of	
  surface	
  strain	
  
components	
  
•  Strain	
  roseie	
  equa:on	
  

–  f0	
  and	
  ϑ0	
  assigned	
  at	
  design	
  stage.	
  They	
  correspond	
  to	
  the	
  radia:on	
  peak	
  in	
  wavenumber	
  domain	
  
–  fd	
  is	
  a	
  sensor	
  output	
  
–  εx,	
  εy,	
  εxy	
  are	
  the	
  unknowns	
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Example	
  Solu:on:	
  q	
  =	
  1	
  GPa	
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Excitation Input
Output, Reference (q = 0 GPa)
Output, Stretched (q = 1 GPa)

Peaks	
  Shia	
  
leads	
  to	
  strain	
  

mapping	
  
Analy?cal	
  (με)	
   Measured	
  (με)	
  

εx	
   1414	
   1434	
  

εy	
   -­‐467	
   -­‐485	
  

εxy	
   0	
   -­‐	
  31	
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Steering	
  proper:es	
  in	
  the	
  bulk	
  

16	
  mm	
  

Electrode	
  1	
  

Electrode	
  2	
  

d	
  

d	
  =	
  2	
  mm	
  
	
  
	
  

f0	
  =	
  3.1	
  MHz	
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f	
  =	
  4	
  MHz,	
  Angle	
  =	
  39.2°	
  	
  

Time	
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  3D	
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Time	
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  =	
  9	
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  =	
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Inspec:on	
  scenario	
  

1	
  

2	
  

3	
  

4	
  

5	
  

3.2516	
  MHz	
  

6.6674	
  MHz	
  

17.61°	
  	
  

62.30°	
  	
  

0.25	
  in	
  

0.50	
  in	
  

Hole	
   Angle	
  [deg]	
   Frequency	
  [MHz]	
  

1	
   17.6	
   3.3	
  

2	
   32.4	
   3.7	
  

3	
   43.6	
   4.3	
  

4	
   51.8	
   5.0	
  

5	
   62.3	
   6.7	
  
Hole	
  1	
  

Hole	
  2	
  

Hole	
  3	
  

Hole	
  4	
  

Hole	
  5	
  

Steering	
  curve	
  

Specimen	
  detail	
  

1	
  
2	
  
3	
  
4	
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Results:	
  f	
  =	
  3.25	
  MHz	
  

P-­‐wave	
  reflec:ons	
  	
  
from	
  top	
  holes	
  



Results:	
  f	
  =	
  6.67	
  MHz	
  



Summary	
  and	
  Outlook	
  
•  Class	
  of	
  transducers	
  designed	
  through	
  a	
  Fourier-­‐based	
  approach	
  

–  Sensing	
  material	
  distribu:on	
  is	
  designed	
  and	
  analyzed	
  in	
  spa:al	
  Fourier	
  domain	
  	
  
–  Exploita:on	
  of	
  inherent	
  frequency-­‐dependent	
  direc:onal	
  proper:es	
  (SHM	
  applica:on)	
  
–  Frequency	
  shias	
  of	
  radia:on	
  associated	
  with	
  local	
  straining	
  (strain	
  sensing	
  applica:on)	
  

•  Currently	
  working	
  on	
  Bulk	
  wave	
  FSAT	
  for	
  thickness	
  steering/interroga:on	
  

•  Poten:al	
  for	
  integra:on	
  for	
  a	
  health&usage	
  monitoring	
  device	
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•  Monitoring	
  issues:	
  
–  Airframe:	
  

• Fa:gue	
  cracking	
  and	
  corrosion	
  drivers	
  of	
  inspec:ons	
  and	
  maintenance	
  
• Damage	
  from	
  impact/ballis:c	
  events	
  	
  

–  Rotor	
  hub:	
  
• Dynamic	
  components	
  subject	
  to	
  high-­‐cycle	
  fa:gue	
  
• Impact	
  damage	
  (ballis:c	
  damage,	
  delamina:ons,	
  voids)	
  

	
  
•  Structural	
  Health	
  and	
  Usage	
  Monitoring	
  strategies:	
  

–  Loads	
  monitoring	
  through	
  strain	
  measurements	
  for	
  fa:gue	
  es:ma:on	
  
–  Ac:ve	
  monitoring	
  of	
  large	
  areas	
  or	
  inaccessible	
  hotspots	
  
–  Passive	
  sensing	
  and	
  localiza:on	
  of	
  impacts	
  

Active SHM Passive SHM 

Background	
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SHM Distributed Transducer Arrays 

•  CFRP	
  composite	
  panel	
  

•  Quasi-­‐isotropic	
  layup	
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Quadrilateral	
  array	
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Figure 1. Two-dimensional 7⇥7 periodic array of point sources.

2.2. Periodic Quadrilateral Frequency-Steerable Periodic Array

Based on the discussion above, one can configure the load distribution provided by an

array mounted on the surface of the plate in a way that generates maxima corresponding

to specific directions of radiation. If several maxima for the load distribution are

available, their selection is driven by the frequency of actuation ⇧, which identifies

the intersection of the dispersion relation of the medium with a specific wavenumber

pair � = [ ⌅1 xi2 ]. This can be conveniently achieved through a periodic distribution

of point-like sources whose location is defined by:

xn1,n2 = n1e1 + n2e2 (7)

where n1, n2 are integers, and e1, e2 are two vectors defining the periodicity of the

array. In this regard, the array topology can be considered as a lattice defined by the

two lattice vectors e1, e2.

The corresponding force distribution can be expressed as:

f(x,⇧) = f0(⇧)
�

n1

�

n2

⇤(x� xn1,n2) (8)

where ni ⇤ [�1
2(Ni � 1), 1

2(Ni � 1)], with Ni defining the number of elements of the

array in the i-th direction.

The periodic quadrilateral array proposed in [19] (see Figure 1) is a particular case for

which:

e1 = d1 cos�i1 + d1 sin�i2
e2 = d2 cos ⇥i1 + d2 sin ⇥i2

(9)

where d1, d2 define the spacing of the array elements along the lattice directions.

f(x1, x2) = f0

NX

n=1

MX

m=1

�(x� xn1,n2)

e1

e2
↵�
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Frequency-­‐dependent	
  radia:on	
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FSAT	
  Spiral	
  Array:	
  thresholding	
  

f̄(x) =

8
<

:

1, f(x) � "
0, f(x) < |"|

�1, f(x)  �"



Numerical	
  Results:	
  
Chirp	
  Excita:on	
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Determina:on	
  of	
  surface	
  strain	
  
components	
  
	
  
•  Three	
  equa:ons	
  needed	
  to	
  solve	
  for	
  strain	
  components	
  (linear	
  system)	
  

–  where:	
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A✏ = b ✏ = A�1b

✏ = ["
x

, "
y

, "
xy

]T

bi = 1/2

"✓
fdi

f0i

◆2

� 1

#

A(i, :) =
⇥
cos

2
(#0i), sin

2
(#0i), sin(2#0i)

⇤
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Numerical	
  Test	
  

q	
  

x	
  

y	
  

1	
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Loca:on	
  of	
  Sensing	
  Device	
  

Displacement	
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Example	
  Solu:on:	
  q	
  =	
  1	
  GPa	
  

Analy?cal	
  (με)	
   Measured	
  (με)	
  

εx	
   0	
   49.5	
  

εy	
   0	
   -­‐52	
  

εxy	
   1881	
   1824	
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Outlook:	
  higher	
  order	
  symmetries	
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